

Federal Department of Finance FDF

Federal Office of Information Technology, Systems and

Telecommunication FOITT

FOITT, November 2023

Discreet Validator Service 3.0

Interface Specification (Version 1.2.4)

Discreet Validator Service 3.0

2/21

Inhalt

1 Introduction ... 3

2 Overview and validation process .. 3

2.1 Validation reference ... 4
2.1.1 Monitoring Endpoint ... 4

2.2 Use of the discrete validator ... 4

3 CLI (command line client) .. 5

3.1 Configuration File .. 6
3.2 Error Messages and Logging .. 6
3.3 Client library ... 8
3.3.1 Java-Interface .. 8

4 API Description ... 9

4.1 Request Attributes ... 10
4.1.1 Example of request .. 11

4.2 Response Attributes .. 12
4.2.1 Example of response ... 14

5 Possible Issues ... 15

5.1 Support ... 15

6 Example of document validation ... 15

6.1 Introduction .. 15
6.2 Signature according to EÖBV ... 15
6.3 Function confirmation misssing (only qualified signature available) 16
6.4 Document has been amended after applying function confirmation 17
6.5 Last Signature is not confirmation from registry of deed 17
6.6 Unsigned file is validated .. 18

7 Connection configuration .. 19

7.1 Test environment ... 19
7.2 Acceptance environment ... 19
7.3 Production environment .. 19

8 Common Validator Mandants .. 20

9 Sources ... 21

Discreet Validator Service 3.0

3/21

1 Introduction

This document describes the interface to the so-called discrete validator. The discrete

validator (hereafter DV) is a REST service that can check signatures on PDF documents

without receiving the PDF documents. The caller of the web service only transmits the

signatures on the document and the hash of the document.

For the discrete validator, the "Java Client" so named in the contract between the cantons

and eOperations Schweiz is delivered with an SDK (Software Development Kit) and a CLI

(command line interface) client (hereafter "Java Client Software Package"). The SDK

provides an easy-to-use abstraction layer for the validation of documents. It takes care of

extracting the data required for calling the web service from the PDF documents to be

validated and executes the call to the web service.

2 Overview and validation process

The discrete validation of a PDF document is based on the verification of signatures by

means of certificates stored in the database.

Rough procedure of the validation:

1. User starts local client

2. select the document to be validated

3. select client (from master data list)

4. select signature

5. send

6. signatures are extracted and hashes are calculated (locally)

7. data is transferred to the server

8. server checks signature

9. hash in the signature is decrypted with the public key and compared with the locally

calculated one

10. check certificate chain

11. check client

12. check CRL (certificate revocation list) and TSA (timestamp authority)

13. create and send back the verification report (optional)

14. client displays result

15. client can save PDF report

Discreet Validator Service 3.0

4/21

2.1 Validation reference

The web validator can be used to check the validation results:

Productive-System:

https://www.validator.ch

https://www.egovsigval.bit.admin.ch/

Test-System:

https://www.egovsigval-d.bit.admin.ch/

2.1.1 Monitoring Endpoint

Backend URL’s:

URL (production): https://egovsigval-backend.bit.admin.ch/public/api/document-type

URL (acceptance): https://egovsigval-backend-a.bit.admin.ch/public/api/document-type

2.2 Use of the discrete validator

To use the DV, the following requirements must be met:

− A user name and password are required in order to use the DV. Customers who have

already used the previous (old) DV in the past and therefore already have a user name

and password, need a new user name and password. These are created by BIT (OFIT

/ UFIT / FOITT) for all environments (REF / ABN / PROD) and sent to the customers.

o Cantons receive the user name and password directly from the BIT after

signing the corresponding contract with eOperations Schweiz. Municipalities

receive the user name and password of their canton from the responsible

office of the canton.

o Customers within the federal administration should consult the BIT website

(Signatur-Verifikationsdienst (SD) (admin.ch)

The Java Client software package can be requested as follows:

− Cantons: Via eOperations Schweiz

− Municipalities: Via canton

− Customers within the federal administration: These customers please consult the BIT

offer page (Signatur-Verifikationsdienst (SD) (admin.ch).

https://www.validator.ch/
https://www.egovsigval.bit.admin.ch/
https://www.egovsigval-d.bit.admin.ch/
https://egovsigval-backend.bit.admin.ch/public/api/document-type
https://egovsigval-backend-a.bit.admin.ch/public/api/document-type
https://intranet.bit.admin.ch/bit_kp/de/home/angebot/einfach-zusammen-arbeiten/signatur-verifikationsdienst.html
https://intranet.bit.admin.ch/bit_kp/de/home/angebot/einfach-zusammen-arbeiten/signatur-verifikationsdienst.html

Discreet Validator Service 3.0

5/21

Basically, the DV works as before. The information on how to carry out a validation can be

found under docs/index.html in the Java client software package supplied.

The latest Java client software package is made available for cantons via eOperations

Schweiz and for customers within the federal administration by BIT.

3 CLI (command line client)

Command line client (CLI) can be used from a windows (PowerShell) or Linux console (e.g.

Bash). Manual of the CLI is part of the distribution package. The manual can be found in

docs folder and named index.html.

The CLI package can be placed in any local system folder. It can be started directly from the

installation folder. Unzip the package go into the home folder of the package and start the cli

as depicted below.

The CLI requires a Java Runtime Environment of version 1.8 or above. The Java executable

must be referenced via environment variable JAVA_HOME.

From JDK version 9 and higher, the default keystore type is PKCS12.

So if you are running the CLI Validator on a higher version than Java 8 you need to set this

properties in the validate.bat / validate.sh script.

“DEFAULT_JVM_OPTS= -Djavax.net.ssl.trustStore=truststore.jks -

Djavax.net.ssl.trustStorePassword=changeit -

Djavax.net.ssl.trustStoreType=jks”

The overview of the actual possible mandators you will find in chapter 8.

Executable scripts for PowerShell and Linux/Bash.

• validate.bat (PowerShell)

• validate.sh (Linux/Bash)

usage: CommandLineInterfaceClient

Command Detail Desciption

-c --container-check Container check, validates all signatures in the pdf file. The

option -c is mutually exclusive with -s.

-d --dump Logs the JSON object of the request and response.

-e --unsigned Generate report even for unsigned files

-E --cert File name and optional password to use for client certificate

authentication. Supported file types are PKCS12 and JKS.

-f --pdffile <filename> file to validate

-i --config <filename> Name of config file to use

-l --lang <lang> get pdf report in the given language, supported codes: de,

fr, it, en. This is an optional parameter, if omitted de is used.

-list List digital signatures of given PDF file

-m --mandator

<mandator >

mandator to use, e.g. Qualified, FullQualified,

Strafregisterauszug (Can also be defined in config file)

-o --report <filename> pdf report will be saved at the given name

-p --proxy HTTP Proxy host and port to use for accessing the

Discreet Validator Service 3.0

6/21

<proxyhost:proxyport

:proxyuser:proxypass

>

validation webservice. If not present, the Java System

Properties are checked. For authentication use the format

proxy:port:user:password

-pw --password

<password>

password for the basic authentication

-rs --outputstyle <style>

Defines the style of the generated pdf report, either a

container with a report per signature or one report for

all.The valid options are: -rs single or -rs container. The

option can be omitted, default is single mode.

Command Detail Desciption

-s --signature

<signaturename>

Name of a signature to check in this pdf file (e.g. Sig-

nature1). Works only for not nested documents. The option

-s is mutually exclusive with -c.

-u --url <url> URL of the validation webservice. (Can also be defined in

config file)

-un --username

<username>

username for the basic authentication

3.1 Configuration File

Options for mandator, service URL and proxy settings can be configured in configuration file.

Format of configuration file must be similar to a Java property file. Format of a configuration

file:

mandator=<value>

validator_url=<value>

proxy_host=<value>

proxy_port=<value>

3.2 Error Messages and Logging

Info and error lgos can be configured in configuration file logback.xml, it is part of the Classes

folder. This client is using Logback as framework of SLF4J. Details how the logging can be

adjusted can be found on website: http://logback.qos.ch/manual/configuration.html#syntax

Example of CLI call:

Validation of all signatures in a file

validate -u https://egovsigval-backend.bit.admin.ch -m Kanton-Zug-

Finanzdirektion -f TC072_Zug_Beschwerdeschrift-Nr2-conv-sig-

Eingangsstempel.pdf -c

Validation of specific signature

validate -u https://egovsigval-backend.bit.admin.ch -m myvalidation -f

file.pdf -s signature1

Generate validation report

validate -u https://egovsigval-backend.bit.admin.ch -m myvalidation -f

file.pdf -c -o report.pdf

Discreet Validator Service 3.0

7/21

Discreet Validator Service 3.0

8/21

3.3 Client library

Client library offers a simple an abstraction layer for the validation of a document. It offers all

needed functions to extract all information needed to use the validation service. It also offers

a method to send the information to be validated to the discrete validation service. As a reply,

the validation result including report is sent back.

The CLI client uses the client library and can be seen as an example how the client library

can be used.

Authentication credentials can be set in Class ValidationServiceClient by using method

credentials.

ValidationServiceClient serviceClient =

ValidationServiceClientBuilder.newBuilder() //

 .serviceUrl(serviceUrl) //

 .credential(new UserPasswordCredential(username,

Secret.hide("password".toCharArray()))) //

 .build();

Java documentation of SDK is available in docs/Javadoc or as short into in index.html.

3.3.1 Java-Interface

Example: Validation of signature

• Variable pdfFile, file object pointing to PDF file

• Variable client describes mandate which should be used as reference for the

validation rules

• Variable serviceURL defines end point of validation service

FileRequest fileRequest = new FileRequest(pdfFile, client);

ValidationServiceClient serviceClient =

ValidationServiceClientBuilder.newBuilder() //

 .serviceUrl(serviceUrl) //

 .build();

ValidationResponse response =

serviceClient.validateOneRequest(Arrays.asList(fileRequest), false,

null, null, "de", null);

Example: Validation of referenced signature

• Variable pdfBytes defines PDF file as byte[] object

• Variable sigName contains a string that specifies name of signature filed to be

validated

• Variable client describes mandate which should be used as reference for the

validation rules

• Variable serviceURL defines end point of validation service

Discreet Validator Service 3.0

9/21

ValidationServiceClient serviceClient =

ValidationServiceClientBuilder.newBuilder() //

 .serviceUrl(serviceUrl) //

 .build();

ValidationResponse response =

serviceClient.validateOneSignature(pdfBytes, client, false, sigName,

 "file.pdf", null, null, "de", null);

Example: Generation of validation report

• Variable pdfFile, file object pointing to PDF file

• Variable client describes mandate which should be used as reference for the

validation rules

• Variable serviceURL defines end point of validation service

FileRequest fileRequest = new FileRequest(pdfFile, client);

ValidationServiceClient serviceClient =

ValidationServiceClientBuilder.newBuilder() //

 .serviceUrl(serviceUrl) //

 .build();

ValidationResponse response =

serviceClient.validateOneRequest(Arrays.asList(fileRequest), true,

null, null, "de", "report.pdf");

File file = new File(response.getPdfOutputFileName());

try (OutputStream stream = new FileOutputStream(file)) {

 stream.write(response.getPdfReport());

}

4 API Description

Discrete validation service can be used with RESTful API. The following return codes are

defined:

Status
Code

Detail

200 Request could be successful processed. Response contains data that

must be analyzed further. Response could contain error messages.

400 Bad Request in case request is malformed or contains wrong encoding.

404 Not Found – In case client cannot be found (mandant)

500 Internal Server Error. In case there is an error on the server side.

As response a JSON document is sent back. Content type of response is application/json.

Character set is UTF-8 encoding.

Basic authentication is used to work directly with API. Username and password must be sent

as part of the header.

Discreet Validator Service 3.0

10/21

4.1 Request Attributes

Name Description Type / Example Req

uire

d

language Language of report String / „de“, „fr“, „it“,

„en“

yes

pdfOutputFileName Name of output report,

path to report can be

defined. This information is

used only locally.

String /

C:\\Workspace\\

Qualified_TCI009_Tes

t_ZertES_doppelt_Gea

rs.report.pdf

no

pdfReport Attribute to request PDF

report

Boolean / true, false yes

processUnsignedFiles Attribute to request PDF

report instead of error

message

Boolean / true, false yes

userName User name or account

name used for the

validation

String no

userOrganization Name of organisation to be

used in validation process

String no

validatableFiles Object containing all

information about file to be

validated

JSON object (Array of

documents)

no

documentHash Hash of document to be

validated

String / base64

encoded

Yes

documentName Name of document String Yes

Signatures Object containing

signatures of document

JSON object (Array of

signatures)

Yes

client Mandant of document to

be used for validation

String Yes

signatureContent CMS object, signature data

with certificate chain,

signer certificate,

timestamp,

Byte[] (String Base64-

encoded, ASN.1)

Yes

signatureDate Date of signature https://www.rfc-

editor.org/rfc/rfc3339#

section-5.6

No

signatureDigest Signed hash value Byte[] (String Base64-

encoded)

Yes

signatureName Name of signature String No

signaturePosition
Position of signature (one

or multiple signatures)
Integer / 0, 1, 2

Yes

changeLevel Level of changes to be

considered in validation

String /

"permitted:sign",

"ignorable"

Yes

coveringWholeDo

cument

Coverage of signature Boolean / true, false Yes

validationData JSON object containing

certificates, crl or ocsp

JSON object No

Discreet Validator Service 3.0

11/21

Name Description Type / Example Req

uire

d

certificates Certificate chain base64

encoded

JSON Array of Strings No

crl Certificate revocation list

base 64 encoded

JSON Array of Strings No

ocsp OCSP base 64 encoded JSON Array of Strings No

client Mandant to be used in

validation of documents

String No

4.1.1 Example of request

{

 "language": "de",

 "pdfOutputFileName": "C:\\Workspace\\ES_doppelt_Gears.report.pdf",

 "pdfReport": true,

 "processUnsignedFiles": true,

 "userName": null,

 "userOrganization": null,

 "validatableFiles": [{

 "documentHash": "JQXZkHMluP6hKDdjHcg…AAkqcrM84=",

 "documentName": "TCI009_Test_ZertES_doppelt_Gears.pdf",

 "signatures": [{

 "client": null,

 "signatureContent": "MIIX6AYJ…==",

 "signatureDate": "2021-12-16T09:24:16Z",

 "signatureDigest": "Lw5+…==",

 "signatureName": "Signature1",

 "signaturePosition": 0,

 "changeLevel": "permitted:sign",

 "coveringWholeDocument": false

 }, {

 "client": null,

 "signatureContent": "MIIX5wY…XX==",

 "signatureDate": "2021-12-16T09:26:37Z",

 "signatureDigest": "eJ7sll…==",

 "signatureName": "Signature2",

 "signaturePosition": 1,

 "changeLevel": "ignorable",

 "coveringWholeDocument": false

 }

],

 "validationData": {

 "certificates": [],

 "crl": [],

 "ocsp": ["SDADFAS..FD+"]

 },

 "client": "Qualified"

 }

]

}

Discreet Validator Service 3.0

12/21

4.2 Response Attributes

Name Description Type / Example

pdfReport Report as base64 encoded

PDF

String / base64 encoded

pdfOutputFileName File name of report String

fileReports Report for validated files JSON object (Array of

documents)

signatureReports Report for each signature

of document

JSON object (Array of

reports per signature)

signatureName Name of signature

validated

String

certificateDetails Certificate details used for

this signature

JSON object (Certificate

details)

qualification List of possible certificates String:

(FORTGESCHRITTEN |

QUALIFIZIERT | ELDIV |

GEREGELT)

classification Certificate class String: (CLASS_A |

CLASS_B | CLASS_C |

UNKNOWN)

type Type of certificate in

certificate chain

String: (ROOT |

INTERMEDIATE |

PERSON |

ORGANISATION |

MACHINE | TIMESTAMP |

UNKNOWN)

hardware Private key generated on

hardware

Boolean / true, false

approved Boolean / true, false

swiss Certificate of Swiss TSP Boolean / true, false

mandatorDetails

mandant Mandant of document to

be used for validation

String / Definition of

mandants

description Description of mandants

link Link to policies of mandant

direct Boolean / true, false

revocationDetails Revocation Details

state Status revocation details String: (REVOKED |

NOT_REVOKED |

UNKNOWN)

date Date of revocation Revocation date

Example: "2021-12-

16T09:26:46.012Z"

timestampDetails Time stamp details

status Status of time stamp String: (VALID |

NOT_VALID |

NOT_TRUSTED |

UNKNOWN | MISSING)

subject Time stamp description String

signatureDate Signature date Date, example: "2021-12-

16T09:26:46.012Z"

Discreet Validator Service 3.0

13/21

Name Description Type / Example

reports

valid Result of report Status: (INFO | VALID |

UNSURE | INVALID)

message Additional info

type Type of validation String: (INTEGRITY |

CERTIFICATE |

REVOCATION |

MANDATOR |

TIMESTAMP)

documentName Name of report String

documentHash Document hash Document hash

mandatorRequirements

mandator Name of mandator

status Status String: (INFO | VALID |

UNSURE | INVALID)

To explain: as a result, we get a list called "fileReports" in the top-level element. This list

contains a list of all signatures for each file and in it a statement about the certificate

applicable in the validator, the client and the revocation plus a statement about the validation

status of the individual categories (integrity, certificate, revocation and client). The values of

the states can assume VALID, INVALID and UNSURE.

• INTEGRITY: Document was not changed after signing.

• CERTIFICATE: The certificate was valid at the time of signing (i.e. not expired). The

certificate is known to us, so it is trustworthy.

• REVOCATION: revocation check (invalidity, blocking of the certificate).

• If the signature is provided with a time stamp, the revocation is checked for this time.

If no time stamp is included, the test date is relevant.

• TIMESTAMP: Time stamp check (if activated in the tenant). Verification that the time

stamp is valid and applied by a trusted time stamp service.

• MANDATOR: Checks whether the signature certificate used is permissible for this

client

Certificate Details:

• qualification: Qualification (QUALIFIED, REGULATED or ADVANCED)

• type: root (ROOT), intermediate root (INTERMEDIATE), person (PERSON),

• Organization (ORGANIZATION), machine (MACHINE), time stamp (TIMESTAMP),

• unknown (UNKNOWN)

• classification: bit class A (CLASS_A), B (CLASS_B), C (CLASS_C) or unknown

(UNKNOWN)

• hardware: token (boolean; hardware certificate or software certificate)

• approved: Approved provider (boolean)

• swiss: Swiss provider (boolean)

Discreet Validator Service 3.0

14/21

4.2.1 Example of response

{

 "pdfReport": "JVBERi0xLjQKJfbk/N...9GCg==",

 "pdfOutputFileName": "Qualified_TCI009_report_with_change_doc.pdf",

 "fileReports": [

 {

 "signatureReports": [

 {

 "signatureName": "",

 "certificateDetails": {

 "qualification": "QUALIFIZIERT",

 "classification": "CLASS_B",

 "type": "UNKNOWN",

 "hardware": true,

 "approved": true,

 "swiss": false

 },

 "mandatorDetails": {

 "mandant": "Kanton-Zug-Finanzdirektion",

 "description": "",

 "link": "https://bit.admin.ch/sigval/policies",

 "direct": true

 },

 "revocationDetails": { "state": "NOT_REVOKED" },

 "timestampDetails": {

 "status": "VALID",

 "subject": "CN=Swiss Government TSA, OU=Time Stamp

Services, OU=Swiss Government PKI, O=Bundesamt fuer Informatik und

Telekommunikation (BIT), OID.2.5.4.97=VATCH-CHE-221.032.573, L=Bern,

C=CH",

 "signatureDate": "2021-12-16T09:26:46.012Z"

 },

 "reports": [

 { "valid": "VALID", "message": "CERTIFICATE", "type":

"CERTIFICATE" },

 { "valid": "VALID", "message": "INTEGRITY", "type":

"INTEGRITY" },

 { "valid": "INVALID", "message": "MANDATOR", "type":

"MANDATOR" },

 { "valid": "VALID", "message": "REVOCATION", "type":

"REVOCATION" },

 { "valid": "VALID", "message": "TIMESTAMP", "type":

"TIMESTAMP" }

]

 }

],

 "documentName": "TCI009_Test_ZertES_doppelt_Gears.pdf",

 "documentHash": "JQXZkHMluP6hKDdjHcglNqyNLyn8jInsEcAAkqcrM84=",

 "mandatorRequirements": {

 "mandator": "Kanton-Zug-Finanzdirektion",

 "status": "INVALID"

 }

 }

]

}

Discreet Validator Service 3.0

15/21

5 Possible Issues

Various errors can occur on different application levels:

1. Error with HTTP requests

2. Errors with web service; especially issues with service attributes that are required to

apply the validation

5.1 Support

The following support process applies to the Discrete Validator::

Please contact the next point in the support cascade to submit your request. In projects, the

support organization may differ from the above representation.

6 Example of document validation

6.1 Introduction

To be able to generate an appropriate validation report, the validation service requires beside

the signature information also information about the document itself. Therefore, the validation

interface has been extended in specification 1.2 (client 2.2.0) to be able to apply more exact

valuation rules. Validation result is provided as JSON object.

Examples below show possible use cases:

6.2 Signature according to EÖBV

A valid PDF file according to EÖBV1 contains a qualified signature and a signature at the last

position to specify the confirmation of function from registry of deed (UPReg).

Städte, Gemeinden

1st Level Support Kanton

2nd Level Support eOperations Schweiz

3rd Level Support BIT

Discreet Validator Service 3.0

16/21

Definition:

A deed must be a PDF/A-1 or PDF/A-2 conformance file, containing N+2 (N must be bigger

or equal to 0) signatures in the following order:

1. First N signatures are qualified signatures (signatures of contract parties); these

signatures are optional.

2. Qualified signature of notary

3. Regulated signature of registry of deed; signature is inserted in field named RegSig.

4. Regulated signature of registry of canton (this signature is optional and dependent on

cantonal law)

5. Additional signatures (e.g. archiving solution) are not part of deed

A validation with CLI can be executed according to the following example:

validate.bat -c -u https://localhost:8080/validator/rs -m upreg-fn -f

examples\qualified-with-eobv.pdf -d –e

Following errors can occur:

• Function name is missing (only qualified signature available)

• Document has been amended after applying function confirmation

• Last signature is no function name confirmation (e.g. additional qualified signature at

the end of confirmation of function)

• Validation of unsigned document

6.3 Function confirmation misssing (only qualified
signature available)

In case of valiation of document with mandant upreg-fn, overall result can not be valid. E.g.

qualified signature is valid but additional validation rules apply to have a valid result.

Request:

validate.bat -c -u https://localhost:8080/validator/rs -m upreg-fn -f

examples\qualified.pdf -d -e

Result:

Only signature is valid:

results for signature with name: Signature1

Name of check: Signature status: VALID

Name of check: Certificate status: VALID

Name of check: Revocation status: VALID

Name of check: Timestamp status: VALID

Name of check: Mandant status: INVALID

Overall validation is invalid:

Validity of file report: INVALID

Discreet Validator Service 3.0

17/21

6.4 Document has been amended after applying function
confirmation

In case a PDF document has been amended after the application of a function confirmation,

so the document content could have been changed.

From version 2.3.0, the library distinguishes between allowed and forbidden changes.

Requests:

validate.bat -c -u https://localhost:8080/validator/rs -m upreg-fn -f

examples\qualified-with-eobv-modified.pdf -d –e

Result:

Both signatures are valid, in terms of characteristics and number of signatures too.

Nevertheless, status of file is negative because file has been amended after confirming the

function.

Validity of file report: INVALID

was the document modified after last signature?: true

mandator requirements not met?: false

6.5 Last Signature is not confirmation from registry of deed

In case a PDF file is signed again after the confirmation of registry of deed, the validity of the

file is not confirmed and should not be accepted.

Requests:

validate.bat -c -u https://localhost:8080/validator/rs -m upreg-fn -f

examples\qualified-with-eobv-with-qualified.pdf -d –e

Result:

All individual signatures are valid but still overall status of document is negative since the

main requirement of EÖBV is not confirmed.

Signature Signature1 is VALID

Signature RegSig is VALID

Signature Signature2 is VALID

Validity of file report: INVALID

was the document modified after last signature?: false

mandator requirements not met?: true

Discreet Validator Service 3.0

18/21

6.6 Unsigned file is validated

An unsigned file can be validated without receiving an exception. Unsigned file results in

negative validation result. In order to have a negative validation result and not an exception,

Option -e must be indicated in CLI call.

New API has been extended with flag processUnsignedFiles.

Requests:

validate.bat -c -u https://localhost:8080/validator/rs -m upreg-fn -f

examples\unsigned.pdf -d –e

Result:

An unsigned file can now be validated. This always leads to a negative result, but no longer

to an exception.

Can be switched on via the CLI using the option "-e"; without specifying the option, the old

behaviour is still executed.

The existing API has been extended by the optional flag "processUnsignedFiles".

Request:

validate.bat -c -u https://localhost:8080/validator/rs -m upreg-fn -f

examples\unsigned.pdf -d –e

Resultat:

Validity of file report: INVALID

Discreet Validator Service 3.0

19/21

7 Connection configuration

7.1 Test environment

The test environment of the discrete validator is available at the following URL:

Backend:

https://egovsigval-backend-d.bit.admin.ch

https://egovsigval-backend-d.bit.admin.ch/service/v3

7.2 Acceptance environment

The acceptance environment of the discrete validator is available at the following URL:

Backend:

https://egovsigval-backend-a.bit.admin.ch

https://egovsigval-backend-a.bit.admin.ch/service/v3

7.3 Production environment

The production environment of the discrete validator is available at the following URL:

Backend:

https://egovsigval-backend.bit.admin.ch

https://egovsigval-backend.bit.admin.ch/service/v3

https://egovsigval-backend-d.bit.admin.ch/
https://egovsigval-backend-d.bit.admin.ch/service/v3
https://egovsigval-backend-a.bit.admin.ch/
https://egovsigval-backend-a.bit.admin.ch/service/v3
https://egovsigval-backend-a.bit.admin.ch/
https://egovsigval-backend-a.bit.admin.ch/service/v3

Discreet Validator Service 3.0

20/21

8 Common Validator Mandants

Name of the

Mandants:

Purpose

FullQualified

(please use the

mandant “Qualified”)

This validator checks whether a document is validly signed with a

qualified certificate and a qualified time stamp of a recognised

provider according to ZertES. All signatures contained in the

document must meet these criteria. This client is used for

documents that were signed after the revision of the ZertES, i.e.

after 01 Jan. 2017.

Qualified his validator checks whether a document is validly signed with a

qualified certificate and a time stamp from a recognised provider

in accordance with ZertES. The presence of a valid time stamp

proving the exact time of signature is not necessary for a positive

validation for documents signed before 1.1.2017 (entry into force

of the revised Federal Act on Electronic Signature ZertES). All

signatures contained in the document must comply with these

criteria.

upreg-fn This validator checks whether an electronic copy of a public deed

or an electronic notarially certified copy in accordance with the

Ordinance on Electronic Public Authentication (Verordnung über

die elektronische öffentliche Beurkundung, EÖBV) is signed by a

notary authorised in accordance with the Register of Notaries,

provided with the confirmation of authorisation of the Register of

Notaries (register signature) and, if applicable, with the

confirmation of authorisation of a cantonal register (currently only

the cantons of VD and GE). Both the signature of the certifying

officer and the register signatures must be provided with a valid

time stamp. Since the register signatures are linked to the

signature of the notary, these signatures must always be validated

together.

Siegel1; This validator checks whether a document bears a regulated

electronic seal according to ZertES. The presence of a qua-lified

time stamp is necessary. All signatures contained in the document

must meet these criteria.

Amtsblattportal This validator whether the publications by a PDF/A-1a signed by

SECO is. SECO has been operating the Official Gazette Portal

(formerly SOGC) since autumn 2018. The official gazette portal

(amtsblattportal.ch) can be used to record official publications that

are published in the "Swiss Official Gazette of Commerce SOGC"

(www.shab.ch) and/or in the cantonal official gazettes of Zurich

(amtsblatt.zh.ch) and Basel-Stadt (kantonsblatt.ch).

edec This validator checks whether the qualified signed document is a

valid assessment ruling or a valid refund document from the

Federal Customs Administration.

Strafregisterauszug This validator checks whether a document is a valid Swiss criminal

1 Note: the verification rules Seal and OfficeSeal are two independent verification rules. A document that is valid

according to the OfficeSeal rule is always valid according to the Seal rule. A document that is valid according to
the checking rule Seal is not necessarily also valid according to the checking rules OfficeSeal.

Discreet Validator Service 3.0

21/21

Name of the

Mandants:

Purpose

record extract.

eSchKG This validator checks whether a document has been signed by a

debt enforcement office. Such documents are sent by debt

collection offices to participants with an eSchKG network.

FederalLaw This validator checks whether there is a validly signed document

on the federal publication platform (www.bundesrecht.admin.ch).

Indeterminate This validator is a technical client, which is used if the validator

cannot clearly assign the document type (the client) due to the

context-based validation (or the validation rules stored for this).

Specific validation rules and reports are defined for this technical

client.

Mixed This validator is a technical client which is used if the document to

be validated has different types of electronic signatures, e.g. a

qualified signature (QES) and one or more advanced signatures,

or a QES and a regulated seal, etc. The validator can also be

used as a validation client. Specific validation rules and reports

are defined for this technical client.

OfficeSeal 2 This validator checks the formal assignment of a document signed

with a seal to an authority.

SwissGov-PKI This validator checks whether a document has been signed with a

personal certificate on a Swiss Government PKI smartcard and

provided with a time stamp from a recognised provider in

accordance with ZertES. All signatures contained in the document

must be valid and meet these criteria.

Kanton-Zug-Finanz-

direktion

This validator checks whether a document has been validly signed

by an administrative authority of the canton, the communes or the

administrative court of the canton of Zug.

RegulatedSignature This validator checks whether a document has been signed with a

regulated certificate with the OID-policy 1.3.6.1.4.1.8024.1.300

issued by ‘QuoVadis Swiss Regulated CA G3’ when the remark is

set to ‘regulated certificate’ as mentioned in the TAV.

Further clients are customer-specific and can be requested according to the procedure in

Chapter 5.1 Support.

9 Sources

Diskreter Validator - Open eGov Tech Wiki DE - Open eGov Wiki (admin.ch)

2 Outlook: An amendment to the TAV (Technical and Administrative Regulations) is currently being prepared as a

supplement to the implementation of the ZertES. In this, the regulated authority certificate will be expanded by
two additional attributes on the basis of the "authority certificates" concept (implementation planned as of 15
June 2022)

https://www.e-service.admin.ch/wiki/display/openegovdoc/Diskreter+Validator

	1 Introduction
	2 Overview and validation process
	2.1 Validation reference
	2.1.1 Monitoring Endpoint

	2.2 Use of the discrete validator

	3 CLI (command line client)
	3.1 Configuration File
	3.2 Error Messages and Logging
	3.3 Client library
	3.3.1 Java-Interface

	4 API Description
	4.1 Request Attributes
	4.1.1 Example of request

	4.2 Response Attributes
	4.2.1 Example of response

	5 Possible Issues
	5.1 Support

	6 Example of document validation
	6.1 Introduction
	6.2 Signature according to EÖBV
	6.3 Function confirmation misssing (only qualified signature available)
	6.4 Document has been amended after applying function confirmation
	6.5 Last Signature is not confirmation from registry of deed
	6.6 Unsigned file is validated

	7 Connection configuration
	7.1 Test environment
	7.2 Acceptance environment
	7.3 Production environment

	8 Common Validator Mandants
	9 Sources

