

Federal Department of Finance FDF

Federal Office of Information Technology, Systems and
Telecommunication FOITT

FOITT, November 2023

Discreet Validator Service 3.0

Interface Specification (Version 1.2.4)

Discreet Validator Service 3.0

2/20

Table of contents
1 Introduction ... 3

2 Overview and validation process .. 3

2.1 Validation reference ... 4
2.1.1 Monitoring Endpoint ... 4

2.2 Use of the discrete validator ... 4

3 CLI (command line client) .. 5

3.1 Configuration File .. 6
3.2 Error Messages and Logging .. 6
3.3 Client library ... 7
3.3.1 Java-Interface .. 7

4 API Description ... 8

4.1 Request Attributes ... 9
4.1.1 Example of request .. 10

4.2 Response Attributes .. 11
4.2.1 Example of response ... 13

5 Possible Issues ... 14

5.1 Support ... 14

6 Example of document validation ... 14

6.1 Introduction .. 14
6.2 Signature according to EÖBV ... 14
6.3 Function confirmation misssing (only qualified signature available) 15
6.4 Document has been amended after applying function confirmation 16
6.5 Last Signature is not confirmation from registry of deed 16
6.6 Unsigned file is validated .. 17

7 Connection configuration .. 18

7.1 Test environment ... 18
7.2 Acceptance environment ... 18
7.3 Production environment .. 18

8 Common Validator Mandants .. 19

9 Sources ... 20

Discreet Validator Service 3.0

3/20

1 Introduction
This document describes the interface to the so-called discrete validator. The discrete
validator (hereafter DV) is a REST service that can check signatures on PDF documents
without receiving the PDF documents. The caller of the web service only transmits the
signatures on the document and the hash of the document.

For the discrete validator, the "Java Client" so named in the contract between the cantons
and eOperations Schweiz is delivered with an SDK (Software Development Kit) and a CLI
(command line interface) client (hereafter "Java Client Software Package"). The SDK
provides an easy-to-use abstraction layer for the validation of documents. It takes care of
extracting the data required for calling the web service from the PDF documents to be
validated and executes the call to the web service.

2 Overview and validation process
The discrete validation of a PDF document is based on the verification of signatures by
means of certificates stored in the database.

Rough procedure of the validation:

1. User starts local client
2. select the document to be validated
3. select client (from master data list)
4. select signature
5. send
6. signatures are extracted and hashes are calculated (locally)
7. data is transferred to the server
8. server checks signature
9. hash in the signature is decrypted with the public key and compared with the locally

calculated one
10. check certificate chain
11. check client
12. check CRL (certificate revocation list) and TSA (timestamp authority)
13. create and send back the verification report (optional)
14. client displays result
15. client can save PDF report

Discreet Validator Service 3.0

4/20

2.1 Validation reference
The web validator can be used to check the validation results:

Productive-System:

https://www.validator.ch

https://www.egovsigval.bit.admin.ch/

Test-System:

https://www.egovsigval-d.bit.admin.ch/

2.1.1 Monitoring Endpoint

Backend URL’s:
URL (production): https://egovsigval-backend.bit.admin.ch/public/api/document-type
URL (acceptance): https://egovsigval-backend-a.bit.admin.ch/public/api/document-type

2.2 Use of the discrete validator

To use the DV, the following requirements must be met:

− A user name and password are required in order to use the DV. Customers who have
already used the previous (old) DV in the past and therefore already have a user name
and password, need a new user name and password. These are created by BIT (OFIT
/ UFIT / FOITT) for all environments (REF / ABN / PROD) and sent to the customers.

o Cantons receive the user name and password directly from the BIT after
signing the corresponding contract with eOperations Schweiz. Municipalities
receive the user name and password of their canton from the responsible
office of the canton.

o Customers within the federal administration should consult the BIT website
(Signatur-Verifikationsdienst (SD) (admin.ch)

The Java Client software package can be requested as follows:

− Cantons: Via eOperations Schweiz

− Municipalities: Via canton

− Customers within the federal administration: These customers please consult the BIT
offer page (Signatur-Verifikationsdienst (SD) (admin.ch).

Basically, the DV works as before. The information on how to carry out a validation can be
found under docs/index.html in the Java client software package supplied.

https://www.validator.ch/
https://www.egovsigval.bit.admin.ch/
https://www.egovsigval-d.bit.admin.ch/
https://egovsigval-backend.bit.admin.ch/public/api/document-type
https://egovsigval-backend-a.bit.admin.ch/public/api/document-type
https://intranet.bit.admin.ch/bit_kp/de/home/angebot/einfach-zusammen-arbeiten/signatur-verifikationsdienst.html
https://intranet.bit.admin.ch/bit_kp/de/home/angebot/einfach-zusammen-arbeiten/signatur-verifikationsdienst.html

Discreet Validator Service 3.0

5/20

The latest Java client software package is made available for cantons via eOperations
Schweiz and for customers within the federal administration by BIT.

3 CLI (command line client)
Command line client (CLI) can be used from a windows (PowerShell) or Linux console (e.g.
Bash). Manual of the CLI is part of the distribution package. The manual can be found in
docs folder and named index.html.

The CLI package can be placed in any local system folder. It can be started directly from the
installation folder. Unzip the package go into the home folder of the package and start the cli
as depicted below.

The CLI requires a Java Runtime Environment of version 1.8 or above. The Java executable
must be referenced via environment variable JAVA_HOME.

From JDK version 9 and higher, the default keystore type is PKCS12.
So if you are running the CLI Validator on a higher version than Java 8 you need to set this
properties in the validate.bat / validate.sh script.

“DEFAULT_JVM_OPTS= -Djavax.net.ssl.trustStore=truststore.jks -
Djavax.net.ssl.trustStorePassword=changeit -
Djavax.net.ssl.trustStoreType=jks”

The overview of the actual possible mandators you will find in chapter 8.

Executable scripts for PowerShell and Linux/Bash.

• validate.bat (PowerShell)
• validate.sh (Linux/Bash)

usage: CommandLineInterfaceClient

Command Detail Desciption
-c --container-check Container check, validates all signatures in the pdf file. The

option -c is mutually exclusive with -s.
-d --dump Logs the JSON object of the request and response.

-e --unsigned Generate report even for unsigned files

-E --cert File name and optional password to use for client certificate
authentication. Supported file types are PKCS12 and JKS.

-f --pdffile <filename> file to validate

-i --config <filename> Name of config file to use

-l --lang <lang> get pdf report in the given language, supported codes: de,
fr, it, en. This is an optional parameter, if omitted de is used.

-list List digital signatures of given PDF file

-m --mandator
<mandator >

mandator to use, e.g. Qualified, FullQualified,
Strafregisterauszug (Can also be defined in config file)

-o --report <filename> pdf report will be saved at the given name

-p --proxy
<proxyhost:proxyport
:proxyuser:proxypass

HTTP Proxy host and port to use for accessing the
validation webservice. If not present, the Java System
Properties are checked. For authentication use the format

Discreet Validator Service 3.0

6/20

> proxy:port:user:password
-pw --password

<password>
password for the basic authentication

-rs --outputstyle <style>

Defines the style of the generated pdf report, either a
container with a report per signature or one report for
all.The valid options are: -rs single or -rs container. The
option can be omitted, default is single mode.

Command Detail Desciption
-s --signature

<signaturename>
Name of a signature to check in this pdf file (e.g. Sig-
nature1). Works only for not nested documents. The option
-s is mutually exclusive with -c.

-u --url <url> URL of the validation webservice. (Can also be defined in
config file)

-un --username
<username>

username for the basic authentication

3.1 Configuration File
Options for mandator, service URL and proxy settings can be configured in configuration file.
Format of configuration file must be similar to a Java property file. Format of a configuration
file:

mandator=<value>
validator_url=<value>
proxy_host=<value>
proxy_port=<value>

3.2 Error Messages and Logging
Info and error lgos can be configured in configuration file logback.xml, it is part of the Classes
folder. This client is using Logback as framework of SLF4J. Details how the logging can be
adjusted can be found on website: http://logback.qos.ch/manual/configuration.html#syntax

Example of CLI call:

Validation of all signatures in a file

validate -u https://egovsigval-backend.bit.admin.ch -m Kanton-Zug-
Finanzdirektion -f TC072_Zug_Beschwerdeschrift-Nr2-conv-sig-
Eingangsstempel.pdf -c

Validation of specific signature

validate -u https://egovsigval-backend.bit.admin.ch -m myvalidation -f
file.pdf -s signature1

Generate validation report

validate -u https://egovsigval-backend.bit.admin.ch -m myvalidation -f
file.pdf -c -o report.pdf

Discreet Validator Service 3.0

7/20

3.3 Client library
Client library offers a simple an abstraction layer for the validation of a document. It offers all
needed functions to extract all information needed to use the validation service. It also offers
a method to send the information to be validated to the discrete validation service. As a reply,
the validation result including report is sent back.
The CLI client uses the client library and can be seen as an example how the client library
can be used.

Authentication credentials can be set in Class ValidationServiceClient by using method
credentials.

ValidationServiceClient serviceClient =
ValidationServiceClientBuilder.newBuilder() //
 .serviceUrl(serviceUrl) //
 .credential(new UserPasswordCredential(username,
Secret.hide("password".toCharArray()))) //
 .build();

Java documentation of SDK is available in docs/Javadoc or as short into in index.html.

3.3.1 Java-Interface

Example: Validation of signature

• Variable pdfFile, file object pointing to PDF file
• Variable client describes mandate which should be used as reference for the

validation rules
• Variable serviceURL defines end point of validation service

FileRequest fileRequest = new FileRequest(pdfFile, client);
ValidationServiceClient serviceClient =
ValidationServiceClientBuilder.newBuilder() //
 .serviceUrl(serviceUrl) //
 .build();
ValidationResponse response =
serviceClient.validateOneRequest(Arrays.asList(fileRequest), false,
null, null, "de", null);

Example: Validation of referenced signature

• Variable pdfBytes defines PDF file as byte[] object
• Variable sigName contains a string that specifies name of signature filed to be

validated
• Variable client describes mandate which should be used as reference for the

validation rules
• Variable serviceURL defines end point of validation service

Discreet Validator Service 3.0

8/20

ValidationServiceClient serviceClient =
ValidationServiceClientBuilder.newBuilder() //
 .serviceUrl(serviceUrl) //
 .build();
ValidationResponse response =
serviceClient.validateOneSignature(pdfBytes, client, false, sigName,
 "file.pdf", null, null, "de", null);

Example: Generation of validation report

• Variable pdfFile, file object pointing to PDF file
• Variable client describes mandate which should be used as reference for the

validation rules
• Variable serviceURL defines end point of validation service

FileRequest fileRequest = new FileRequest(pdfFile, client);
ValidationServiceClient serviceClient =
ValidationServiceClientBuilder.newBuilder() //
 .serviceUrl(serviceUrl) //
 .build();
ValidationResponse response =
serviceClient.validateOneRequest(Arrays.asList(fileRequest), true,
null, null, "de", "report.pdf");
File file = new File(response.getPdfOutputFileName());
try (OutputStream stream = new FileOutputStream(file)) {
 stream.write(response.getPdfReport());
}

4 API Description
Discrete validation service can be used with RESTful API. The following return codes are
defined:

Status
Code

Detail

200 Request could be successful processed. Response contains data that
must be analyzed further. Response could contain error messages.

400 Bad Request in case request is malformed or contains wrong encoding.

404 Not Found – In case client cannot be found (mandant)

500 Internal Server Error. In case there is an error on the server side.

As response a JSON document is sent back. Content type of response is application/json.
Character set is UTF-8 encoding.

Basic authentication is used to work directly with API. Username and password must be sent
as part of the header.

Discreet Validator Service 3.0

9/20

4.1 Request Attributes
Name Description Type / Example Req

uire
d

language Language of report String / „de“, „fr“, „it“,
„en“

yes

pdfOutputFileName Name of output report,
path to report can be
defined. This information is
used only locally.

String /
C:\\Workspace\\
Qualified_TCI009_Tes
t_ZertES_doppelt_Gea
rs.report.pdf

no

pdfReport Attribute to request PDF
report

Boolean / true, false yes

processUnsignedFiles Attribute to request PDF
report instead of error
message

Boolean / true, false yes

userName User name or account
name used for the
validation

String no

userOrganization Name of organisation to be
used in validation process

String no

validatableFiles Object containing all
information about file to be
validated

JSON object (Array of
documents)

no

documentHash Hash of document to be
validated

String / base64
encoded

Yes

documentName Name of document String Yes

Signatures Object containing
signatures of document

JSON object (Array of
signatures)

Yes

client Mandant of document to
be used for validation

String Yes

signatureContent CMS object, signature data
with certificate chain,
signer certificate,
timestamp,

Byte[] (String Base64-
encoded, ASN.1)

Yes

signatureDate Date of signature https://www.rfc-
editor.org/rfc/rfc3339#
section-5.6

No

signatureDigest Signed hash value Byte[] (String Base64-
encoded)

Yes

signatureName Name of signature String No

signaturePosition Position of signature (one
or multiple signatures) Integer / 0, 1, 2 Yes

changeLevel Level of changes to be
considered in validation

String /
"permitted:sign",
"ignorable"

Yes

coveringWholeDocu
ment

Coverage of signature Boolean / true, false Yes

validationData JSON object containing
certificates, crl or ocsp

JSON object No

Discreet Validator Service 3.0

10/20

Name Description Type / Example Req
uire
d

certificates Certificate chain base64
encoded

JSON Array of Strings No

crl Certificate revocation list
base 64 encoded

JSON Array of Strings No

ocsp OCSP base 64 encoded JSON Array of Strings No

client Mandant to be used in
validation of documents

String No

4.1.1 Example of request

{
 "language": "de",
 "pdfOutputFileName": "C:\\Workspace\\ES_doppelt_Gears.report.pdf",
 "pdfReport": true,
 "processUnsignedFiles": true,
 "userName": null,
 "userOrganization": null,
 "validatableFiles": [{
 "documentHash": "JQXZkHMluP6hKDdjHcg…AAkqcrM84=",
 "documentName": "TCI009_Test_ZertES_doppelt_Gears.pdf",
 "signatures": [{
 "client": null,
 "signatureContent": "MIIX6AYJ…==",
 "signatureDate": "2021-12-16T09:24:16Z",
 "signatureDigest": "Lw5+…==",
 "signatureName": "Signature1",
 "signaturePosition": 0,
 "changeLevel": "permitted:sign",
 "coveringWholeDocument": false
 }, {
 "client": null,
 "signatureContent": "MIIX5wY…XX==",
 "signatureDate": "2021-12-16T09:26:37Z",
 "signatureDigest": "eJ7sll…==",
 "signatureName": "Signature2",
 "signaturePosition": 1,
 "changeLevel": "ignorable",
 "coveringWholeDocument": false
 }
],
 "validationData": {
 "certificates": [],
 "crl": [],
 "ocsp": ["SDADFAS..FD+"]
 },
 "client": "Qualified"
 }
]
}

Discreet Validator Service 3.0

11/20

4.2 Response Attributes

Name Description Type / Example
pdfReport Report as base64 encoded

PDF
String / base64 encoded

pdfOutputFileName File name of report String

fileReports Report for validated files JSON object (Array of
documents)

signatureReports Report for each signature
of document

JSON object (Array of
reports per signature)

signatureName Name of signature
validated

String

certificateDetails Certificate details used for
this signature

JSON object (Certificate
details)

qualification List of possible certificates String:
(FORTGESCHRITTEN |
QUALIFIZIERT | ELDIV |
GEREGELT)

classification Certificate class String: (CLASS_A |
CLASS_B | CLASS_C |
UNKNOWN)

type Type of certificate in
certificate chain

String: (ROOT |
INTERMEDIATE |
PERSON |
ORGANISATION |
MACHINE | TIMESTAMP |
UNKNOWN)

hardware Private key generated on
hardware

Boolean / true, false

approved Boolean / true, false

swiss Certificate of Swiss TSP Boolean / true, false

mandatorDetails

mandant Mandant of document to
be used for validation

String / Definition of
mandants

description Description of mandants

link Link to policies of mandant

direct Boolean / true, false

revocationDetails Revocation Details

state Status revocation details String: (REVOKED |
NOT_REVOKED |
UNKNOWN)

date Date of revocation Revocation date
Example: "2021-12-
16T09:26:46.012Z"

timestampDetails Time stamp details

status Status of time stamp String: (VALID |
NOT_VALID |
NOT_TRUSTED |
UNKNOWN | MISSING)

Discreet Validator Service 3.0

12/20

subject Time stamp description String

signatureDate Signature date Date, example: "2021-12-
16T09:26:46.012Z"

Name Description Type / Example

reports

valid Result of report Status: (INFO | VALID |
UNSURE | INVALID)

message Additional info

type Type of validation String: (INTEGRITY |
CERTIFICATE |
REVOCATION |
MANDATOR |
TIMESTAMP)

documentName Name of report String

documentHash Document hash Document hash

mandatorRequirements

mandator Name of mandator

status Status String: (INFO | VALID |
UNSURE | INVALID)

To explain: as a result, we get a list called "fileReports" in the top-level element. This list
contains a list of all signatures for each file and in it a statement about the certificate
applicable in the validator, the client and the revocation plus a statement about the validation
status of the individual categories (integrity, certificate, revocation and client). The values of
the states can assume VALID, INVALID and UNSURE.

• INTEGRITY: Document was not changed after signing.
• CERTIFICATE: The certificate was valid at the time of signing (i.e. not expired). The

certificate is known to us, so it is trustworthy.
• REVOCATION: revocation check (invalidity, blocking of the certificate).
• If the signature is provided with a time stamp, the revocation is checked for this time.

If no time stamp is included, the test date is relevant.
• TIMESTAMP: Time stamp check (if activated in the tenant). Verification that the time

stamp is valid and applied by a trusted time stamp service.
• MANDATOR: Checks whether the signature certificate used is permissible for this

client

Certificate Details:

• qualification: Qualification (QUALIFIED, REGULATED or ADVANCED)
• type: root (ROOT), intermediate root (INTERMEDIATE), person (PERSON),
• Organization (ORGANIZATION), machine (MACHINE), time stamp (TIMESTAMP),
• unknown (UNKNOWN)
• classification: bit class A (CLASS_A), B (CLASS_B), C (CLASS_C) or unknown

(UNKNOWN)
• hardware: token (boolean; hardware certificate or software certificate)
• approved: Approved provider (boolean)
• swiss: Swiss provider (boolean)

Discreet Validator Service 3.0

13/20

4.2.1 Example of response
{
 "pdfReport": "JVBERi0xLjQKJfbk/N...9GCg==",
 "pdfOutputFileName": "Qualified_TCI009_report_with_change_doc.pdf",
 "fileReports": [
 {
 "signatureReports": [
 {
 "signatureName": "",
 "certificateDetails": {
 "qualification": "QUALIFIZIERT",
 "classification": "CLASS_B",
 "type": "UNKNOWN",
 "hardware": true,
 "approved": true,
 "swiss": false
 },
 "mandatorDetails": {
 "mandant": "Kanton-Zug-Finanzdirektion",
 "description": "",
 "link": "https://bit.admin.ch/sigval/policies",
 "direct": true
 },
 "revocationDetails": { "state": "NOT_REVOKED" },
 "timestampDetails": {
 "status": "VALID",
 "subject": "CN=Swiss Government TSA, OU=Time Stamp
Services, OU=Swiss Government PKI, O=Bundesamt fuer Informatik und
Telekommunikation (BIT), OID.2.5.4.97=VATCH-CHE-221.032.573, L=Bern,
C=CH",
 "signatureDate": "2021-12-16T09:26:46.012Z"
 },
 "reports": [
 { "valid": "VALID", "message": "CERTIFICATE", "type":
"CERTIFICATE" },
 { "valid": "VALID", "message": "INTEGRITY", "type":
"INTEGRITY" },
 { "valid": "INVALID", "message": "MANDATOR", "type":
"MANDATOR" },
 { "valid": "VALID", "message": "REVOCATION", "type":
"REVOCATION" },
 { "valid": "VALID", "message": "TIMESTAMP", "type":
"TIMESTAMP" }
]
 }
],
 "documentName": "TCI009_Test_ZertES_doppelt_Gears.pdf",
 "documentHash": "JQXZkHMluP6hKDdjHcglNqyNLyn8jInsEcAAkqcrM84=",
 "mandatorRequirements": {
 "mandator": "Kanton-Zug-Finanzdirektion",
 "status": "INVALID"
 }
 }
]
}

Discreet Validator Service 3.0

14/20

5 Possible Issues
Various errors can occur on different application levels:

1. Error with HTTP requests
2. Errors with web service; especially issues with service attributes that are required to

apply the validation

5.1 Support
The following support process applies to the Discrete Validator::

Please contact the next point in the support cascade to submit your request. In projects, the
support organization may differ from the above representation.

6 Example of document validation
6.1 Introduction
To be able to generate an appropriate validation report, the validation service requires beside
the signature information also information about the document itself. Therefore, the validation
interface has been extended in specification 1.2 (client 2.2.0) to be able to apply more exact
valuation rules. Validation result is provided as JSON object.

Examples below show possible use cases:

6.2 Signature according to EÖBV
A valid PDF file according to EÖBV1 contains a qualified signature and a signature at the last
position to specify the confirmation of function from registry of deed (UPReg).

Städte, Gemeinden

1st Level Support Kanton

2nd Level Support eOperations Schweiz

3rd Level Support BIT

Discreet Validator Service 3.0

15/20

Definition:

A deed must be a PDF/A-1 or PDF/A-2 conformance file, containing N+2 (N must be bigger
or equal to 0) signatures in the following order:

1. First N signatures are qualified signatures (signatures of contract parties); these
signatures are optional.

2. Qualified signature of notary
3. Regulated signature of registry of deed; signature is inserted in field named RegSig.
4. Regulated signature of registry of canton (this signature is optional and dependent on

cantonal law)
5. Additional signatures (e.g. archiving solution) are not part of deed

A validation with CLI can be executed according to the following example:

validate.bat -c -u https://localhost:8080/validator/rs -m upreg-fn -f
examples\qualified-with-eobv.pdf -d –e

Following errors can occur:

• Function name is missing (only qualified signature available)
• Document has been amended after applying function confirmation
• Last signature is no function name confirmation (e.g. additional qualified signature at

the end of confirmation of function)
• Validation of unsigned document

6.3 Function confirmation misssing (only qualified
signature available)

In case of valiation of document with mandant upreg-fn, overall result can not be valid. E.g.
qualified signature is valid but additional validation rules apply to have a valid result.

Request:

validate.bat -c -u https://localhost:8080/validator/rs -m upreg-fn -f
examples\qualified.pdf -d -e

Result:

Only signature is valid:

results for signature with name: Signature1
Name of check: Signature status: VALID
Name of check: Certificate status: VALID
Name of check: Revocation status: VALID
Name of check: Timestamp status: VALID
Name of check: Mandant status: INVALID

Overall validation is invalid:

Validity of file report: INVALID

Discreet Validator Service 3.0

16/20

6.4 Document has been amended after applying function
confirmation

In case a PDF document has been amended after the application of a function confirmation,
so the document content could have been changed.

From version 2.3.0, the library distinguishes between allowed and forbidden changes.

Requests:

validate.bat -c -u https://localhost:8080/validator/rs -m upreg-fn -f
examples\qualified-with-eobv-modified.pdf -d –e

Result:

Both signatures are valid, in terms of characteristics and number of signatures too.
Nevertheless, status of file is negative because file has been amended after confirming the
function.

Validity of file report: INVALID
was the document modified after last signature?: true
mandator requirements not met?: false

6.5 Last Signature is not confirmation from registry of deed
In case a PDF file is signed again after the confirmation of registry of deed, the validity of the
file is not confirmed and should not be accepted.

Requests:

validate.bat -c -u https://localhost:8080/validator/rs -m upreg-fn -f
examples\qualified-with-eobv-with-qualified.pdf -d –e

Result:

All individual signatures are valid but still overall status of document is negative since the
main requirement of EÖBV is not confirmed.

Signature Signature1 is VALID
Signature RegSig is VALID
Signature Signature2 is VALID
Validity of file report: INVALID
was the document modified after last signature?: false
mandator requirements not met?: true

Discreet Validator Service 3.0

17/20

6.6 Unsigned file is validated
An unsigned file can be validated without receiving an exception. Unsigned file results in
negative validation result. In order to have a negative validation result and not an exception,
Option -e must be indicated in CLI call.
New API has been extended with flag processUnsignedFiles.

Requests:

validate.bat -c -u https://localhost:8080/validator/rs -m upreg-fn -f
examples\unsigned.pdf -d –e

Result:

An unsigned file can now be validated. This always leads to a negative result, but no longer
to an exception.
Can be switched on via the CLI using the option "-e"; without specifying the option, the old
behaviour is still executed.
The existing API has been extended by the optional flag "processUnsignedFiles".

Request:

validate.bat -c -u https://localhost:8080/validator/rs -m upreg-fn -f
examples\unsigned.pdf -d –e

Resultat:

Validity of file report: INVALID

Discreet Validator Service 3.0

18/20

7 Connection configuration
7.1 Test environment
The test environment of the discrete validator is available at the following URL:

Backend:

https://egovsigval-backend-d.bit.admin.ch

https://egovsigval-backend-d.bit.admin.ch/service/v3

7.2 Acceptance environment
The acceptance environment of the discrete validator is available at the following URL:

Backend:

https://egovsigval-backend-a.bit.admin.ch

https://egovsigval-backend-a.bit.admin.ch/service/v3

7.3 Production environment
The production environment of the discrete validator is available at the following URL:

Backend:

https://egovsigval-backend.bit.admin.ch

https://egovsigval-backend.bit.admin.ch/service/v3

https://egovsigval-backend-d.bit.admin.ch/
https://egovsigval-backend-d.bit.admin.ch/service/v3
https://egovsigval-backend-a.bit.admin.ch/
https://egovsigval-backend-a.bit.admin.ch/service/v3
https://egovsigval-backend-a.bit.admin.ch/
https://egovsigval-backend-a.bit.admin.ch/service/v3

Discreet Validator Service 3.0

19/20

8 Common Validator Mandants

Name of the
Mandants:

Purpose

FullQualified
(please use the
mandant “Qualified”)

This validator checks whether a document is validly signed with a
qualified certificate and a qualified time stamp of a recognised
provider according to ZertES. All signatures contained in the
document must meet these criteria. This client is used for
documents that were signed after the revision of the ZertES, i.e.
after 01 Jan. 2017.

Qualified his validator checks whether a document is validly signed with a
qualified certificate and a time stamp from a recognised provider
in accordance with ZertES. The presence of a valid time stamp
proving the exact time of signature is not necessary for a positive
validation for documents signed before 1.1.2017 (entry into force
of the revised Federal Act on Electronic Signature ZertES). All
signatures contained in the document must comply with these
criteria.

upreg-fn This validator checks whether an electronic copy of a public deed
or an electronic notarially certified copy in accordance with the
Ordinance on Electronic Public Authentication (Verordnung über
die elektronische öffentliche Beurkundung, EÖBV) is signed by a
notary authorised in accordance with the Register of Notaries,
provided with the confirmation of authorisation of the Register of
Notaries (register signature) and, if applicable, with the
confirmation of authorisation of a cantonal register (currently only
the cantons of VD and GE). Both the signature of the certifying
officer and the register signatures must be provided with a valid
time stamp. Since the register signatures are linked to the
signature of the notary, these signatures must always be validated
together.

Siegel1; This validator checks whether a document bears a regulated
electronic seal according to ZertES. The presence of a qua-lified
time stamp is necessary. All signatures contained in the document
must meet these criteria.

Amtsblattportal This validator whether the publications by a PDF/A-1a signed by
SECO is. SECO has been operating the Official Gazette Portal
(formerly SOGC) since autumn 2018. The official gazette portal
(amtsblattportal.ch) can be used to record official publications that
are published in the "Swiss Official Gazette of Commerce SOGC"
(www.shab.ch) and/or in the cantonal official gazettes of Zurich
(amtsblatt.zh.ch) and Basel-Stadt (kantonsblatt.ch).

edec This validator checks whether the qualified signed document is a
valid assessment ruling or a valid refund document from the
Federal Customs Administration.

Strafregisterauszug This validator checks whether a document is a valid Swiss criminal
record extract.

1 Note: the verification rules Seal and OfficeSeal are two independent verification rules. A document that is valid

according to the OfficeSeal rule is always valid according to the Seal rule. A document that is valid according to
the checking rule Seal is not necessarily also valid according to the checking rules OfficeSeal.

Discreet Validator Service 3.0

20/20

Name of the
Mandants:

Purpose

eSchKG This validator checks whether a document has been signed by a
debt enforcement office. Such documents are sent by debt
collection offices to participants with an eSchKG network.

FederalLaw This validator checks whether there is a validly signed document
on the federal publication platform (www.bundesrecht.admin.ch).

Indeterminate This validator is a technical client, which is used if the validator
cannot clearly assign the document type (the client) due to the
context-based validation (or the validation rules stored for this).
Specific validation rules and reports are defined for this technical
client.

Mixed This validator is a technical client which is used if the document to
be validated has different types of electronic signatures, e.g. a
qualified signature (QES) and one or more advanced signatures,
or a QES and a regulated seal, etc. The validator can also be
used as a validation client. Specific validation rules and reports
are defined for this technical client.

OfficeSeal 2 This validator checks the formal assignment of a document signed
with a seal to an authority.

SwissGov-PKI This validator checks whether a document has been signed with a
personal certificate on a Swiss Government PKI smartcard and
provided with a time stamp from a recognised provider in
accordance with ZertES. All signatures contained in the document
must be valid and meet these criteria.

Kanton-Zug-Finanz-
direktion

This validator checks whether a document has been validly signed
by an administrative authority of the canton, the communes or the
administrative court of the canton of Zug.

RegulatedSignature This validator checks whether a document has been signed with a
regulated certificate with the OID-policy 1.3.6.1.4.1.8024.1.300
issued by ‘QuoVadis Swiss Regulated CA G3’ when the remark is
set to ‘regulated certificate’ as mentioned in the TAV.

Further clients are customer-specific and can be requested according to the procedure in
Chapter 5.1 Support.

9 Sources

Diskreter Validator - Open eGov Tech Wiki DE - Open eGov Wiki (admin.ch)

2 Outlook: An amendment to the TAV (Technical and Administrative Regulations) is currently being prepared as a

supplement to the implementation of the ZertES. In this, the regulated authority certificate will be expanded by
two additional attributes on the basis of the "authority certificates" concept (implementation planned as of 15
June 2022)

https://www.e-service.admin.ch/wiki/display/openegovdoc/Diskreter%20Validator

	Discreet Validator Service 3.0
	Interface Specification (Version 1.2.4)

	1 Introduction
	2 Overview and validation process
	2.1 Validation reference
	2.1.1 Monitoring Endpoint

	2.2 Use of the discrete validator

	3 CLI (command line client)
	3.1 Configuration File
	3.2 Error Messages and Logging
	3.3 Client library
	3.3.1 Java-Interface

	4 API Description
	4.1 Request Attributes
	4.1.1 Example of request

	4.2 Response Attributes
	4.2.1 Example of response

	5 Possible Issues
	5.1 Support

	6 Example of document validation
	6.1 Introduction
	6.2 Signature according to EÖBV
	6.3 Function confirmation misssing (only qualified signature available)
	6.4 Document has been amended after applying function confirmation
	6.5 Last Signature is not confirmation from registry of deed
	6.6 Unsigned file is validated

	7 Connection configuration
	7.1 Test environment
	7.2 Acceptance environment
	7.3 Production environment

	8 Common Validator Mandants
	9 Sources

